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Abstract

A new piecewise-polynomial interface method (PIM) for discretizing elliptic problems with complex interfaces between
high-contrast materials is derived, analyzed and tested. A Krylov-accelerated interface multigrid approach (IMG) solves
the discretization efficiently. Stability and convergence are proved in one dimension, while an extensive array of numerical
experiments with complex interfaces and large coefficient transitions demonstrate the accuracy, efficiency and robustness of
the method in two dimensions.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Elliptic interface problems with discontinuous coefficients and singular sources are found in many applica-
tions and simulations [12,16,19]. Solutions of these problems are usually non-smooth or discontinuous across
interfaces. For example, consider the following elliptic partial differential equation
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r � ðbruÞ � ju ¼ f in Xþ [ X� ð1Þ

with Dirichlet boundary condition
u ¼ g on oX;
where bðx; yÞP bmin > 0; j P 0. Here X is a regular domain separated by an interface C into subdomains Xþ

and X� (see Fig. 1). Both the coefficient b and the source term f are typically discontinuous across the interface
C, where the following jump conditions are prescribed:
½u� :¼ uþ � u� ¼ w; ½bun� :¼ bþuþn � b�u�n ¼ v
991/$ - see front matter � 2008 Elsevier Inc. All rights reserved.

1016/j.jcp.2008.04.027

rresponding author.
ail addresses: ctbing@math.berkeley.edu (T. Chen), strain@math.berkeley.edu (J. Strain).

mailto:<xml_chg_old>strain@math.berkeley.edu</xml_chg_old><xml_chg_new>ctbing@math.berkeley.edu</xml_chg_new>
mailto:<xml_chg_old>ctbing@math.berkeley.edu</xml_chg_old><xml_chg_new>strain@math.berkeley.edu</xml_chg_new>


Fig. 1. (a) An irregular interface C partitions a regular domain: X ¼ Xþ [ C [ X� where bþ=b� can be either small or large. (b) Normal
and tangential directions along the interface C. Here u� ¼ ujX� .
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with w; v being functions defined along the interface C. In the special case that w ¼ v ¼ 0, the solution u is
continuous but its normal derivative un has jumps across C whenever bþ is different from b�.

The challenge in solving elliptic interface problems is that interfaces can be very complex while the coeffi-
cients can be high-contrast. Consequently, it is difficult to use body-fitted unsteady grid to fit the evolving
interfaces. A fixed Cartesian grid, where the interface can cut through the grid lines, is often used. A variety
of methods have been proposed to deal with the grid-interface interaction [4,7,9,10,16,13–15,28,32,29–
31,33,34].

LeVeque and Li proposed the immersed interface method (IIM) for solving elliptic equations with discon-
tinuous coefficients and singular sources [13]. Global Oðh2Þ accuracy is achieved by using the conventional
Oðh2Þ central scheme for regular points and a local OðhÞ scheme for irregular points. A Taylor series expansion
at the interface yields a set of linear equations for the undetermined coefficients and the correction term. A
local OðhÞ approximation requires jump conditions involving second derivatives. Various extensions and
improvements have been considered in the literature. For interface problems with piecewise constant coeffi-
cients, a fast IIM was constructed by introducing an unknown jump condition ½un�, to be solved numerically
together with the elliptic equation [14]. The success of the fast IIM is based on the fact that the IIM produces
the standard finite difference scheme with a correction term in 2D when bþ ¼ b� ¼ 1. As a result, standard fast
Poisson solvers can be applied. For general elliptic problems, a maximum principle preserving immersed inter-
face method (MIIM) forces the system matrix to be an M-matrix [15]. The coefficients of the finite difference
scheme are found by solving a constrained optimization problem, guaranteeing both stability and global sec-
ond-order accuracy.

Motivated by the fast IIM, the explicit jump IIM (EJIIM) introduces the high-order jumps at the intersec-
tions of the interface and the coordinate directions as auxiliary unknowns [28]. The interpolation equation for
these high-order jumps is derived via a one-sided local polynomial approximation and the jump data. Numer-
ical examples show that it may be critical to choose between exterior and interior points for interpolation
accuracy.

Another second-order method for elliptic interface problems is the decomposed immersed interface method
(DIIM), which decomposes the jump data along coordinate directions [4]. The method uses the standard cen-
tral finite difference scheme for the left-hand side and introduces a correction term from jumps to the right-
hand side, where high-order one-sided interpolation is used on both sides of the interface. The advantage is
the coefficient matrix remains symmetric and diagonally dominant and thus most standard solvers can be
applied. However, due to the fact that the right-hand side may involve large correction terms, a small param-
eter for successive under-relaxation is required to reach convergence.

A related high-order approach is the matched interface and boundary method (MIB) [34]. In each dimen-
sion, a high-order finite difference equation using grid data and jump data is derived through the help of fic-
titious points. In multiple dimensions, the jump data ½bux� in each coordinate direction is expressed in terms of
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½bun� and ½bus�. The latter is obtained by a combination of the prescribed ½us� and one-sided interpolation of
nearby grid values. Since this one-sided interpolation has to be second-order and would involve many grid
points on one side, the method is limited to simple interfaces. For general irregular interfaces, the MIB was
improved by disassociating the discretization and the domain extension [33]. To deal with sharp-edged inter-
faces, the concepts of primary and secondary fictitious values are introduced in [31], where second-order con-
vergence is confirmed through numerical examples. However, the resulting scheme has a critical acute angle
limitation because the scheme depends on a priori calculation of secondary fictitious values. This restriction
is removed by using two sets of interface jump conditions in [29]. Interfaces with corner points are also
addressed in [10], but the resulting method is only first-order for Lipschitz-continuous interfaces.

Recently a coupling interface method (CIM) has been introduced for solving elliptic interface problems [7].
It takes a dimension splitting approach and is derived from a linear/quadratic approximation on both sides of
the interfaces in 1D. For higher dimensions, a coupled equation for the first-order derivatives is derived
through the jump conditions in each coordinate direction. However, the CIM requires either that the interface
intersects each grid segment at most once (first-order accurate) or that the interface does not intersect two
adjacent grid segment simultaneously (second-order accurate). This restriction limits the application of the
CIM to complex moving interface problems.

Another challenge of elliptic interface problems is to design a fast solver for the resulting matrix, which is
typically unsymmetric [7,13,34] so standard fast solvers are not applicable. In [1–3], multigrid methods were
designed specifically for interface problems discretized by immersed interface methods [13,15]. For interfaces
with moderate curvature, the method proposed in [1] produced satisfactory performance. AMG is employed in
[7] to solve the resulting linear system. It is observed that convergence becomes worse when the problem has
high-contrast coefficients and thus many more iterations are needed to achieve reasonable accuracy [1].

Thus an interface method should have the following properties:

� The method produces reasonably accurate solutions on a given mesh, when interfaces are complex and/or
there exist high-contrast coefficients. Typical examples are two interface points moving towards each other
in 1D or interfaces developing acute angles in higher dimensions.
� There exists an associated fast solver, which incorporates jump conditions and converges independent of

mesh size. The complexity of interfaces, as well as the ratio bþ=b� has minimum effect on convergence rates.

This paper introduces a new piecewise-polynomial interface method (PIM) for elliptic problems. For 1D
cases, we incorporate all possible jump conditions and differential equations in local approximations. As a
result, the PIM employs the minimum number of grid points while enjoying second-order accuracy, even with
multiple intersections. Explicit formulas are derived and rigorous analysis of general cases confirms stability
and rate of convergence.

To extend the idea for higher dimensions, we introduce a least squares approach to determine the unknown
coefficients for piecewise polynomials, due to its flexibility for complex interfaces. Various cases with multiple
intersections are carefully addressed. Extensive numerical examples show that the PIM produces high-quality
solutions for complex interfaces and high-contrast coefficients represented on coarse grids with multiple inter-
sections. The interface may have corner points and/or high curvature. The method naturally extends to treat
problems with multiple interfaces, general jump conditions and mixed boundary conditions.

We further apply the idea of the PIM to design a second-order accurate interpolator and thus a new inter-
face multigrid solver (IMG). We provide spectral analysis to investigate convergence properties of the IMG.
To enhance its robustness for problems with high-curvature interfaces and high-contrast coefficients, the IMG
is used as preconditioner for Krylov subspace iterations. Among Krylov iterations, GMRES [22] and BiCG-
STAB [26] are appropriate since our matrix is not symmetric. Numerical examples show that the IMG-pre-
conditioned Krylov solver is very stable and fast. It usually takes less than 6 iterations for the relative
residual to go below 10�10, despite the fact that bþ=b� can move between 103 and 10�3. The computational
time grows linearly in the number of unknowns.

Similar discretization approaches can be found in [32,33], in that all methods use Taylor series expansion
for local approximation and use two physical jumps only. We note that [32,33] use a wider stencil in both 1D
and higher dimensions and thus have trouble dealing with complex interfaces. For higher-dimensional cases,
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[32,33] uses dimension splitting approaches with one-sided interpolation and have to refine the mesh when
multiple intersections occur. On the other hand, the PIM uses higher-dimensional polynomials for approxima-
tion and produces accurate results without refining the mesh for complex interfaces with multiple intersec-
tions. Least squares techniques are also employed in [15], but the method there uses quadratic optimization
techniques to solve an under-determined system with the sign property of the discrete maximum principle.
The PIM proposes piecewise polynomials according to local geometries and then imposes at least as many
equations, thus solving an overdetermined system, which has been shown to have full column rank. Thus
the existence of solutions is guaranteed as well as the order of accuracy.

The paper is organized as follows: we describe the piecewise-polynomial interface method for 1D in Section
2. Section 3 extends the approach to 2D. Section 4 provides stability and convergence analysis for the PIM in
1D. We derive and analyze the new multigrid approach in Section 5. Section 6 presents GMRES(m) precon-
ditioned by the multigrid solver. Numerical examples in Section 7 confirm the accuracy of the PIM and the
efficiency of the new Krylov-accelerated multigrid solver on problems with high-contrast coefficients and com-
plex interfaces. Comparisons with previous methods are also presented.

2. The piecewise-polynomial interface method in 1D

The PIM is most conveniently derived in one-dimensional geometry. Consider the 1D elliptic equation
Lu :¼ ðbuxÞx ¼ f ðxÞ; 0 < x < 1 ð2Þ

along with the jump conditions
½u�ðaiÞ ¼ wi; ½bux�ðaiÞ ¼ vi; i ¼ 1; . . . ; nC
on the domain X ¼ ð0; 1Þ divided into subdomains Xþ and X� by a set of interface points C :¼ fa1; . . . ; anCg.
Dirichlet boundary conditions are imposed on oX. We define the subdomains
Xþ :¼ fx 2 ½0; 1� : /ðxÞ > 0g; X� :¼ fx 2 ½0; 1� : /ðxÞ < 0g;

where the phase function /ðxÞ :¼

QnC
i¼1ðai � xÞ. A uniform grid on the interval [0,1] is given by
xi ¼ ði� 1Þh; 1 6 i 6 N ;
where h ¼ 1=ðN � 1Þ. We say xi is a regular point if the interface does not separate any points in the standard
three-point stencil fxi�1; xi; xiþ1g centered at xi. Otherwise, we say xi is an irregular point.

Assume that (2) is approximated at each interior point xi with 1 < i < N by
LhU i :¼ ci;1U i�1 þ ci;2U i þ ci;3Uiþ1 ¼ F i þ Ci;
where F i ¼ f ðxiÞ and Ci is a correction term which vanishes except near interfaces. The standard three-point
stencil at an interior regular point xi has
ci;1 ¼
bi�1=2

h2
; ci;2 ¼

�bi�1=2 � biþ1=2

h2
; ci;1 ¼

biþ1=2

h2
; Ci ¼ 0:
At irregular points we use the modified stencil described below. For simplicity of notation, we shall assume
that bðxÞ is piecewise constant. The same approach works when bðxÞ is piecewise smooth.

2.1. Single intersection

Suppose that a is the only interface point between xj�1 and xjþ1, and xj 6 a ¼ xj þ hh < xjþ1 (see Fig. 2). We
use a piecewise quadratic polynomial
Fig. 2. A single-intersection case: a ¼ xj þ hh.
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pðxÞ ¼
p1ðxÞ :¼ a1x2 þ a2xþ a3 x < a;

p2ðxÞ :¼ a4x2 þ a5xþ a6 x > a

�
ð3Þ
to approximate the solution uðxÞ near xj, where a1; . . . ; a6 are undetermined coefficients. We assume that the
following values are provided:
uðxjÞ ¼ Uj; uðxjþ1Þ ¼ Ujþ1;

½u�ðaÞ ¼ w; ½bux�ðaÞ ¼ v;

LuþðaÞ ¼ f ð1Þ; Lu�ðaÞ ¼ f ð2Þ:

ð4Þ
Substituting (3) into (4) gives a linear system for the unknown coefficients:
x2
j xj 1 0 0 0

0 0 0 x2
jþ1 xjþ1 1

a2 a 1 �a2 �a �1

2bþa bþ 0 �2b�a �b� 0

2bþ 0 0 0 0 0

0 0 0 2b� 0 0

26666666664

37777777775

a1

a2

a3

a4

a5

a6

2666666664

3777777775
¼

U j

U jþ1

w

v

f ð1Þ

f ð2Þ

2666666664

3777777775
: ð5Þ
After solving for the coefficients in terms of the right-hand side, we obtain approximate solution values as lin-
ear combinations of data:
bU jþ1 � p1ðxjþ1Þ ¼ a1x2
jþ1 þ a2xjþ1 þ a3 ¼: k1;1U j þ k1;2Ujþ1 þþk1;3wþ k1;4vþ k1;5f ð1Þ þ k1;6f ð2Þ
and
 bU j � p2ðxjÞ ¼ a4x2
j þ a5xj þ a6 ¼: k2;1Uj þ k2;2U jþ1 þ k2;3wþ k2;4vþ k2;5f ð1Þ þ k2;6f ð2Þ:
Symbolic computation gives explicit formulas for the coefficients ki;j:
k1;1 ¼ 1� b�

b̂
; k2;1 ¼

bþ

b̂
;

k1;2 ¼
b�

b̂
; k2;2 ¼ 1� bþ

b̂
;

k1;3 ¼
b�

b̂
; k2;3 ¼ �

bþ

b̂
;

k1;4 ¼
ð1� hÞ

b̂
h; k2;4 ¼

h

b̂
h;

k1;5 ¼
ð1� hÞðb̂� hbþÞ

2bþb̂
h2; k2;5 ¼ �

h2

2b̂
h2;

k1;6 ¼ �
ð1� hÞ2

2b̂
h2; k2;6 ¼

hðb̂� ð1� hÞb�Þ
2b�b̂

h2;

ð6Þ
where b̂ is the weighted average
b̂ :¼ hb� þ ð1� hÞbþ > 0:
The modified stencils for j and jþ 1 are then
ðbuxÞxðxjÞ �
bþ

h2
ðU j�1 þ bU jþ1 � 2UjÞ;

ðbuxÞxðxjþ1Þ �
b�

h2
ð bU j þ U jþ2 � 2Ujþ1Þ:
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As a result, we have
LhUj :¼ bþ

h2
ðk1;2Ujþ1 þ U j�1 � ð2� k1;1ÞUjÞ ¼ F j þ Cj;

LhUjþ1 :¼ b�

h2
ðUjþ2 þ k2;1Uj � ð2� k2;2ÞUjþ1Þ ¼ F jþ1 þ Cjþ1;

ð7Þ
where
Cj ¼ �
bþ

h2
ðk1;3wþ k1;4vþ k1;5f ð1Þ þ k1;6f ð2ÞÞ;

Cjþ1 ¼ �
b�

h2
ðk2;3wþ k2;4vþ k2;5f ð1Þ þ k2;6f ð2ÞÞ:

ð8Þ
Note 1. When bþ ¼ b�, we have k1;1 ¼ 0 and k1;2 ¼ 1. As a result, we have regular stencils at irregular points
when b is continuous.

Note 2. The closed formulas in (6) are useful for convergence analysis. In practice, numerical solutions of the
local systems are faster and more stable than closed formulas.
2.2. Multiple intersections

The single-intersection approach naturally extends to multiple-intersection cases. A typical case is shown in
Fig. 3, where a1 and a2 are the only interface points between xj�1 and xjþ1 and xj 6 a1 < a2 < xjþ1. As in the
single-intersection case, we use a piecewise quadratic polynomial
pðxÞ ¼
p1ðxÞ :¼ a1x2 þ a2xþ a3 x < a1;

p2ðxÞ :¼ a4x2 þ a5xþ a6 a1 < x < a2;

p3ðxÞ :¼ a7x2 þ a8xþ a9 x > a2

8><>: ð9Þ
to approximate the solution uðxÞ near xj. We assume that the following values are provided:
uðxjÞ ¼ U j; uðxjþ1Þ ¼ U jþ1;

½u�ðaiÞ ¼ wi; ½bux�ðaiÞ ¼ vi; i ¼ 1; 2;

Luþða1Þ ¼ f ð1Þ; Lu�
a1 þ a2

2

� �
¼ f ð2Þ; Luþða2Þ ¼ f ð3Þ:

ð10Þ
Substituting (9) into (10), a linear system for the unknown coefficients can be set as above, yielding approx-
imate solution values
bU jþ1 � p1ðxjþ1Þ ¼: k1;1Uj þ k1;2U jþ1 þ k1;3w1 þ k1;4w2 þ k1;5v1 þ k1;6v2 þ k1;7f ð1Þ þ k1;8f ð2Þ þ k1;9f ð3Þ
and
 bU j � p3ðxjÞ ¼: k2;1Uj þ k2;2U jþ1 þ k2;3w1 þ k2;4w2 þ k2;5v1 þ k2;6v2 þ k2;7f ð1Þ þ k2;8f ð2Þ þ k2;9f ð3Þ:
Explicit formulas for ki;j are provided in A.1. As a result, we have for the irregular points
Fig. 3. A double-intersection case: a1 ¼ xj þ h1h, a2 ¼ xj þ h2h.
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LhU j :¼ bþ

h2
ðk1;2U jþ1 þ Uj�1 � ð2� k1;1ÞU jÞ ¼ F j þ Cj;

LhU jþ1 :¼ bþ

h2
ðU jþ2 þ k2;1U j � ð2� k2;2ÞU jþ1Þ ¼ F jþ1 þ Cjþ1;

ð11Þ
where
Cj ¼ �
bþ

h2
ðk1;3w1 þ k1;4w2 þ k1;5v1 þ k1;6v2 þ k1;7f ð1Þ þ k1;8f ð2Þ þ k1;9f ð3ÞÞ;

Cjþ1 ¼ �
bþ

h2
ðk2;3w1 þ k2;4w2 þ k2;5v1 þ k2;6v2 þ k2;7f ð1Þ þ k2;8f ð2Þ þ k2;9f ð3ÞÞ:

ð12Þ
Note 3. When bþ ¼ b�, we have k1;1 ¼ 0 and k1;2 ¼ 1 and thus a regular stencil at the irregular points when b
is continuous.

Note 4. The sign conditions
k1;5; k2;5 > 0; k1;6; k2;6 < 0 ð13Þ

turn out to be the key property in the convergence proof below.

Note 5. For the coefficients bðxÞ, we assume the same constant bþ for both x < a1 and x > a2. More generally,
we can assume bðxÞ ¼ b1 for x < a1, bðxÞ ¼ b2 for a1 < x < a2 and b3 for x > a2. A similar conclusion holds.
2.3. Why multiple intersections

We design this example to justify the consideration of multiple-intersection cases. It also arises in the solu-
tion of moving interface problems when interfaces collide. The coefficient is
bðxÞ ¼ 1:0 if x 2 Xþ;

2:0 otherwise:

�

The source term is
f ðxÞ ¼ �18 sinð3xÞ if x 2 Xþ;

�2 cosðxÞ otherwise:

�

We propose the homogeneous jump conditions
½u� ¼ ½bux� ¼ 0:0
as well as Dirichlet boundary conditions uð0Þ ¼ 0, uð1Þ ¼ 2 sin 3. The phase function is
/ðxÞ ¼ ð0:38� xÞð0:4� xÞ. Since an analytical solution is not available, we compare solutions on coarse grids
with the solution on the finest grid ðN ¼ 609Þ. Fig. 3 displays the relative positions of the interface and grid
points ðj ¼ 8Þ in the case N ¼ 20. We compare

(1) the PIM discretization at irregular points x8 and x9 and
(2) standard stencils at x8 and x9, ignoring the interface.

Fig. 4 shows a comparison of the numerical results obtained from both approaches when N ¼ 20. The max-
imum error from the approach (2) is of order 10�1 while the PIM approach (1) reduces it to 10�3. Therefore,
interface points may cause jumps in both the solution and its derivatives, which affect the process of discret-
izing differential equations for high accuracy. Of course multiple intersections are even more unavoidable and
problematic in two- or three-dimensional problems.



0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

3

3.5

x

u(
x)
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2.4. Rank analysis

In this section we show that the local system determining the unknown stencil always has full rank, first for
piecewise constant and then for variable coefficients.

2.4.1. Piecewise constant coefficients

Theorem 2.1. Given two points xj < xjþ1, and two arrays of points a1; . . . ; ak and c1; . . . ; ck�1 satisfying

xj 6 a1 < c1 < a2 < c2 < � � � < ck�1 < ak 6 xjþ1 (see Fig. 5). Assume without loss of generality that k P 2.

Define a piecewise quadratic polynomial pðxÞ by
Fig. 5.
differe
pðxÞ ¼

p1ðxÞ x < xj;

p2ðxÞ xj < x < a1;

p3ðxÞ a1 < x < a2;

. . .

pkþ1ðxÞ x > xjþ1;

8>>>>>><>>>>>>:

where piðxÞ are quadratic polynomials. If bðxÞ is piecewise constant, then pðxÞ is uniquely determined by the fol-

lowing 3k þ 3 values:
pðxjÞ; pðxjþ1Þ;
½p�ðaiÞ; ½bux�ðaiÞ; i ¼ 1; . . . ; k;

LpðxjÞ; Lpðxjþ1Þ; LpðciÞ; i ¼ 1; . . . ; k � 1;
where L is the differential operator of (2).
A general multiple-intersection case. We impose function values at xj; xjþ1 (circles), jump conditions at ai (triangles) and partial
ntial equations at ci and xj, xjþ1 (squares).
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Proof. It suffices to show that if the 3k þ 3 values provided are all zero, then pðxÞ � 0. If
LpðxjÞ ¼ 0; Lpðxjþ1Þ ¼ 0; LpðciÞ ¼ 0 i ¼ 1; . . . ; k � 1;
then pðxÞ must be piecewise linear since bðxÞ is piecewise constant. The homogeneous jump conditions
½p�ðaiÞ ¼ 0; ½bpx�ðaiÞ ¼ 0; i ¼ 1; . . . ; k
show that pðxÞ is actually continuous and each linear piece has the same sign of slope since bðxÞ > 0. Therefore
pðxÞ is monotonic. On the other hand we have pðxjÞ ¼ pðxjþ1Þ ¼ 0: The conclusion follows immediately. h
2.4.2. Variable coefficients

The same conclusion holds for variable-coefficient cases provided that the step size h is small enough. For
simplicity we consider the single-intersection case (see Fig. 2).

Theorem 2.2. Suppose that a is the only interface point between xj�1 and xjþ1, and xj 6 a ¼ xj þ hh < xjþ1. If

maxfjbþx j; jb
�
x jg > 0, then the local system determining unknown coefficients has full rank if
h <
minfb�=bþ; bþ=b�g

maxfjbþx j; jb
�
x jg

; ð14Þ
where b�; b�x are evaluated at a.

Proof. Using the same notations in Section 2.1, we obtain a local linear system
Aa :¼

x2
j xj 1 0 0 0

0 0 0 x2
jþ1 xjþ1 1

a2 a 1 �a2 �a �1

2bþa bþ 0 �2b�a �b� 0

2bþ þ 2abþx bþx 0 0 0 0

0 0 0 2b� þ 2ab�x b�x 0

26666666664

37777777775

a1

a2

a3

a4

a5

a6

2666666664

3777777775
¼

Uj

U jþ1

w

v

f ð1Þ

f ð2Þ

2666666664

3777777775
¼: b:
Some calculations shows that the determinant of the matrix is
detðAÞ ¼ 2h 2bþb�ðhb� þ ð1� hÞbþÞ � ð1� hÞ2bþbþb�x hþ h2b�b�bþx h
� �

P 2h 2bþb�ðhb� þ ð1� hÞbþÞ � ðbþbþ þ b�b�Þmaxfjbþx j; jb
�
x jgh

� �
:

A sufficient condition to ensure detðAÞ 6¼ 0 is that
h <
2bþb�ðhb� þ ð1� hÞbþÞ

ðbþbþ þ b�b�Þmaxfjbþx j; jb
�
x jg

:

After simplification, it suffices to assume
h <
minfb�=bþ; bþ=b�g

maxfjbþx j; jb
�
x jg

: �
Note 6. If bðxÞ is piecewise constant, then maxfjbþx j; jb
�
x jg ¼ 0 and thus the inequality (14) is always satisfied.
2.5. Numerical examples for the 1D PIM

We present several examples to confirm the accuracy and robustness of the 1D PIM. Example 1 considers
the case when bðxÞ is highly oscillating. Example 2 explores the effect of interface locations on the global accu-
racy in solution.
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2.5.1. Example 1

The exact solution is
Table
Examp

N

20
80
320
1280

Here E
Xþ ¼
uðxÞ ¼
ex cosðxÞ if x 2 Xþ;

0 otherwise

�

and the coefficient is
bðxÞ ¼ 1:0þ 0:6 sinðkxÞ if x 2 Xþ;

1 otherwise:

�

The phase function is /ðxÞ ¼ ð0:4� xÞð0:404� xÞð0:6� xÞð0:604� xÞ: As a result, we have two pairs of clus-
tered interface points on coarse grids, which are then well separated on fine grids. Table 1 shows the numerical
results for k ¼ 20 and 80. The convergence rate is very smooth and not affected by the transition from multiple
intersections to single intersection as N increases.

For comparison purpose, we also present the numerical results for the same problem without interfaces, i.e.
Xþ ¼ ð0; 1Þ. The results are very similar. Therefore, the 1D PIM works well for highly oscillating coefficients in
terms of both accuracy and convergence rates.

2.5.2. Example 2

The exact solution is
uðxÞ ¼ sinðxÞ þ 1 if x 2 Xþ;

cosðxÞ � 1 otherwise

�

and the coefficient is
bðxÞ ¼ 1:0 if x 2 Xþ;

2:0 otherwise:

�

We fix the grid to be N ¼ 40. The phase function is /ðxÞ ¼ ða� xÞðb� xÞ where
a ¼ x20 þ ð1� dÞh=2; b ¼ x20 þ ð1þ dÞh=2
with d being an parameter. We vary d from 0.01 to 0.99
d ¼ 0:01; 0:02; . . . ; 0:99;
so that the interface points move around inside the interval ðx20; x21Þ. Fig. 6 demonstrates uniform accuracy
with respect to the location of interface points.

3. The piecewise-polynomial interface method in 2D

The 1D approach extends naturally to 2D. We assume the domain X ¼ ð0; 1Þ 	 ð0; 1Þ and cover the square
with N grid points in each direction, so that
1
le 1: b is highly oscillating

k ¼ 20 k ¼ 80

kENk1 Order keNk1 Order kENk1 Order keNk1 Order

3.361e�03 3.431e�03 5.549e�02 8.762e�02
2.266e�04 1.9 1.914e�04 2.0 1.859e�03 2.4 2.412e�03 2.5
1.311e�05 2.0 1.172e�05 2.0 1.188e�04 2.0 1.444e�04 2.0
7.428e�07 2.1 7.292e�07 2.0 7.186e�06 2.0 8.968e�06 2.0

N is the maximum error ku� Uk1 for the interface problem with a mesh size N while eN is the maximum error for the problem
ð0; 1Þ, containing k wavelengths of the coefficient b.
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Fig. 6. The effect of interface location on global accuracy. Note the small scale in y-direction. Here kek1 is the maximum error ku� Uk1
and N ¼ 40.
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xi ¼ ði� 1Þh; yj ¼ ðj� 1Þh; i; j ¼ 1; . . . ;N ;
where h ¼ 1=ðN � 1Þ. We say that ðxi; yjÞ is a regular point if the interface does not separate any points in the
standard five-point stencil centered at ðxi; yjÞ. Otherwise, we say that ðxi; yjÞ is an irregular point.

Assume that at each interior point ðxi; yjÞ with 1 < i; j < N the differential equation (1) is approximated byX

LhU i;j :¼

ðik ;jkÞ2Nij

ckU ik ;jk
¼ F ij þ Cij;
where F ij ¼ f ðxi; yjÞ, Cij is a correction term at ði; jÞ and Nij is an index set of grid points neighboring ðxi; yjÞ.
The standard five-point stencil at a regular point ðxi; yjÞ has
1

h
biþ1=2;j

U iþ1;j � U i;j

h
� bi�1=2;j

U i;j � U i�1;j

h

� �
þ bi;jþ1=2

U i;jþ1 � Ui;j

h
� bi;j�1=2

U i;j � U i;j�1

h

� �� 	
� ji;jU i;j

¼ F ij;
where
bi;j ¼ bðxi; yjÞ; biþ1=2;j ¼ bðxi þ
h
2
; yjÞ
and so on. Therefore, we have Cij ¼ 0 and
Nij ¼ fði; jÞ; ðiþ 1; jÞ; ði� 1; jÞ; ði; jþ 1Þ; ði; j� 1Þg:
At irregular points we use modified stencils described below. For simplicity of notation, we shall assume that
bðx; yÞ is piecewise constant and j � 0. The same approach works for general cases.

3.1. Single intersection

Consider the typical case shown in Fig. 7. We use a piecewise quadratic polynomial
pðx; yÞ ¼ p1ðx; yÞ ¼ a1x2 þ a2xy þ a3y2 þ a4xþ a5y þ a6 ðx; yÞ 2 Xþ;

p2ðx; yÞ ¼ a7x2 þ a8xy þ a9y2 þ a10xþ a11y þ a12 ðx; yÞ 2 X�

�
ð15Þ
to approximate the solution uðx; yÞ near a1. We assume that the following values are provided:
uðxik ; yjk
Þ ¼ Uik ;jk

; ðik; jkÞ 2 Nij;

½u�ðaiÞ ¼ wi; ½bun�ðaiÞ ¼ vi; i ¼ 1; 2; 3;

Luþða1Þ ¼ f ð1Þ; Lu�ða1Þ ¼ f ð2Þ;

ð16Þ



Fig. 7. A single-intersection case: a1 is the only intersection point between ði; jÞ and ðiþ 1; jÞ. Here a2 is an extra interface point nearby.
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where Nij is the index set of 8 grid points marked with circles in Fig. 7. As a result, we can substitute (15) into
(16), set up a 16	 12 linear system for the unknown coefficients and solve them via least squares, yielding
approximate solution values
Fig. 8.
anothe
bU iþ1;j � p1ðxiþ1; yjÞ; bU i;j � p2ðxi; yjÞ:
The modified stencils for ði; jÞ and ðiþ 1; jÞ are
ððbuxÞx þ ðbuyÞyÞðxi; yjÞ �
bþ

h2
ð bU iþ1;j þ U i;jþ1 þ U i�1;j þ Ui;j�1 � 4U i;jÞ;

ððbuxÞx þ ðbuyÞyÞðxiþ1; yjÞ �
b�

h2
ðU iþ2;j þ U iþ1;jþ1 þ bU i�1;j þ Uiþ1;j�1 � 4Uiþ1;jÞ:
The rest follows from the 1D PIM approach.

Note 7. We could select fewer neighbor points, making the local system exactly determined. However, the
local system might be singular if it is square (see Section 3.5 for an example).

Note 8. It is a problem-dependent question about how many neighbor points to select. For complex interfaces
more aggression is appropriate but the standard nine-point stencil usually suffices.
3.2. Multiple intersections

When representing complex interfaces on coarse grids, more than one interface points may separate neigh-
boring grid points. Consider the typical example shown in Fig. 8. Even though ðxi; yjÞ and ðxi; yjþ1Þ are both in
Xþ, we should expect some discontinuity in the solution or its derivatives. Thus the standard stencil cannot be
applied directly at these two irregular points. In the spirit of the 1D PIM, we propose a piecewise quadratic
polynomial
Double-intersection case: a1, a2 are the interface points between ði; jÞ and ði; jþ 1Þ. a3 is an extra interface point near a1 and a4 is
r interface point near a2.
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pðx; yÞ ¼
p1ðx; yÞ ðx; yÞ 2 Xþ; y 6 ya1

;

p2ðx; yÞ ðx; yÞ 2 X�;

p3ðx; yÞ ðx; yÞ 2 Xþ; y P ya2

8><>: ð17Þ
to approximate the solution uðx; yÞ near a1; a2 where ðxai ; yai
Þ are the coordinates of ai, i ¼ 1; 2. We assume that

the following values are provided:
uðxik ; yjk
Þ ¼ Uik ;jk

; ðik; jkÞ 2 Nij;

½u�ðaiÞ ¼ wi; ½bun�ðaiÞ ¼ vi; i ¼ 1; . . . ; 6;

Luþða1Þ ¼ f ð1Þ; Lu�ða1=2Þ ¼ f ð1=2Þ; Luþða2Þ ¼ f ð2Þ;

ð18Þ
where a1=2 is the middle point between a1 and a2 and Nij is the index set of eight points marked with circles in
Fig. 8. As a result, we can substitute (17) into (18), set up a 23	 18 linear system for the unknown coefficients
and solve for them via least squares, yielding approximate solution values
bU i;jþ1 � p1ðxi; yjþ1Þ; bU i;j � p3ðxi; yjÞ:
The modified stencils for ði; jÞ and ði; jþ 1Þ are then
ððbuxÞx þ ðbuyÞyÞðxi; yjÞ �
bþ

h2
ðU i;j þ bU i;jþ1 þ U i�1;j þ Ui;j�1 � 4U i;jÞ;

ððbuxÞx þ ðbuyÞyÞðxi; yjþ1Þ �
bþ

h2
ðUiþ1;jþ1 þ U i;jþ2 þ Ui�1;jþ1 þ bU i;j�1 � 4U i;jþ1Þ:
Note 9. Numerical experiments show that if we propose quadratic polynomials for p1; p3 but linear
polynomial for p2, only first-order convergence rates can be achieved.
3.3. Hard cases

Extremely complex interfaces on coarse grids may involve additional complications. Fig. 9 shows two cases.

(1) In Fig. 9a, there are enough neighbor points for ðiþ 1; jÞ but none for ði; jÞ. As a result, the standard
approach in Section 3.1 works but produces inaccurate representations.

(2) In Fig. 9b, there are too few neighbor points for ði; jÞ and ðiþ 1; jÞ and thus the standard approach will
produce an under-determined local system.

To resolve these hard cases, we look beyond ði; jÞ and ðiþ 1; jÞ and proposes more polynomials as neces-
sary. Fig. 9a and b shows the resulting stencils. We follow two criteria in designing new polynomial(s):
Fig. 9. Examples for hard cases.



7516 T. Chen, J. Strain / Journal of Computational Physics 227 (2008) 7503–7542
� The search starts from a neighbor of the irregular point. In Fig. 9, ði� 1; jÞ is a neighbor of ði; jÞ.
� The new polynomial should have enough supporting grid points. In Fig. 9, ði� 1; jÞ is thus a good

candidate.

In almost all of our numerical examples, only one additional polynomial is needed.

3.4. Order of accuracy

One difference between the 2D PIM and the 1D version is that we use jump conditions at interface points off
grid lines. The following analysis justifies the approach for smooth interfaces or fine grids.

Lemma 3.1. Let pðx; yÞ be a 2D quadratic polynomial satisfying the following six conditions:
pðxi; yiÞ ¼ pi;
op
o~n
ðxi; yiÞ ¼ qi; i ¼ 1; 2; 3; ð19Þ
where~n is an arbitrary unit vector. If the points fðxi; yiÞg
3
i¼1 are not collinear and~n is not parallel to any segment

connecting two of the points, then the conditions (19) uniquely determine pðx; yÞ.

Proof. Let pðx; yÞ ¼ a1x2 þ a2xy þ a3y2 þ a4xþ a5y þ a6. We assume without loss of generality that
fðxi; yiÞg ¼ fð0; 0Þ; ð1; rÞ; ðs; tÞg; ~n ¼ ð1; 0Þ;
where r; s; t are arbitrary real numbers. From conditions (19) we can set up the system for the coefficients faig
as:
Aa :¼

0 0 0 0 0 1

0 0 0 1 0 0

1 r r2 1 r 1

2 r 0 1 0 0

s2 st t2 s t 1

2s t 0 1 0 0

2666666664

3777777775

a1

a2

a3

a4

a5

a6

2666666664

3777777775
¼

p1

q1

p2

q2

p3

q3

2666666664

3777777775
¼: b:
Then pðx; yÞ is uniquely determined iff the matrix A is non-singular. A straightforward calculation shows that
detðAÞ ¼ 2rtðr � tÞðt � rsÞ:

If rt ¼ 0 or t ¼ r then at least one of the segments connecting two of the points has the same direction as ~n,
while if t ¼ rs then three points are collinear. This completes the proof. h

Note 10. By a perturbation analysis, we can show that the lemma still holds if conditions (19) are replaced by
pðxi; yiÞ ¼ pi;
op
o~ni
ðxi; yiÞ ¼ qi; i ¼ 1; 2; 3;
provided that maxi;jfj~ni �~njjg 6 OðhÞ.

Note 11. For the case shown in Fig. 7, Lemma 3.1 shows that the quadratic polynomial p1� p2 is uniquely
determined everywhere from the six jump conditions. Therefore if the number of grid points collected around
ði; jÞ and ðiþ 1; jÞ is greater than or equal to six and the points are in general position, then the system (16) has
full rank. The same conclusion holds for general cases.

Theorem 3.2. If all the points involved in Eq. (16) satisfy
jxi � xjj ¼ OðhÞ ð20Þ

then the PIM local approximation has an accuracy of Oðh3Þ.
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Proof. For simplicity, we consider the single-intersection case in Fig. 7. First we set up a linear system for the
unknown coefficient as in (5), where the right-hand side contains either u� or its derivatives. The full column
rank of this system is guaranteed by Lemma 3.1. Taylor expansion at a1 gives
bU iþ1;j � uiþ1;j ¼ p1ðxiþ1; yjÞ � uiþ1;j ¼

X
k

hk
X

pþq¼k

ðCþpqo
p
xo

q
y uþ þ C�pqo

p
xo

q
y u�Þ:
From dimensional analysis the coefficients C�pq depends on b� and the relative positions of xi and ai, but not on
u� or h due to (20). On the other hand, this approximation is exact if the true solution is indeed a piecewise
quadratic polynomial. Therefore, C�pq ¼ 0 for p þ q 6 2 and so
bU iþ1;j � uiþ1;j ¼ Oðh3Þ: �
Note 12. The same argument can be applied to multiple-intersection cases and thus Oðh3Þ accuracy is always
achieved. Therefore, we have local truncation error of OðhÞ at irregular points and thus globally second-order
accuracy is expected for computed solutions.
3.5. Why least squares: a singular case

Consider the typical situation shown in Fig. 10 where we take a naive approach of imposing one condition
per unknown to get a square linear system:
uðxik ; yjk
Þ ¼ Uik ;jk

; ðik; jkÞ 2 Nij;

½u�ðaÞ ¼ w; ½bun�ðaÞ ¼ v;

LuþðaÞ ¼ f ð1Þ; Lu�ðaÞ ¼ f ð2Þ:
However, the local 12	 12 system has only rank 11 whenever a is on the same line as ði; jÞ and ðiþ 1; jÞ!
Alternatively we can replace a by some other interface point â where â is not on the same line as ði; jÞ and

ðiþ 1; jÞ. Then the local system has full rank. But solving for the unknown coefficients gives
bU iþ1;j ¼ 4Ui;j � Ui�1;j � Ui;jþ1 � U i;j�1 þ C;
where C is some constant. The global matrix then has the corresponding row for the point ði; jÞ all zeros!
Least squares provide the flexibility of adding more information appropriately to effectively remove these

difficulties with minimal extra effort.

4. Convergence analysis for the 1D PIM

4.1. Single intersection

We assume that a is the only interface point between xj�1 and xjþ1 with xj 6 a ¼ xj þ hh < xjþ1 (see Fig. 2).
Define
Fig. 10. A singular case.
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b̂ :¼ hb� þ ð1� hÞbþ; bmax :¼ maxfbþ; b�g; bmin :¼ minfbþ; b�g;
Mxxx :¼ maxfmax

x<a
ju000ðxÞj;max

x>a
ju000ðxÞjg; Mxxxx :¼ maxfmax

x<a
ju0000 ðxÞj;max

x>a
ju0000 ðxÞjg:
4.1.1. Local truncation error

We define the truncation error at each interior point by the usual formula:
T i :¼ Lhui � fi � Ci;
where ui ¼ uðxiÞ. At regular points, Taylor expansion shows j T i j6 Oðh2Þ. At an irregular point xj, we
have
 bU jþ1 ¼ k1;1U j þ k1;2U jþ1 þ k1;3wþ k1;4vþ k1;5f ð1Þ þ k1;6f ð2Þ:
As a result, the local truncation error
T j ¼
bþuj�1 � 2bþuj þ bþûjþ1

h2
� fj:
Plugging in all the expressions (6) and simplifying gives
T j ¼
bþð1� hÞðh2D1 � hD2 þ D3Þh

b̂
þOðh2Þ;
where
D1 ¼ �
bþ

2
uþxxx þ

b�

3
uþxxx þ

b�

6
u�xxx;

D2 ¼
bþ

2
uþxxx �

b�

6
uþxxx �

b�

3
u�xxx;

D3 ¼ �
bþ

6
uþxxx þ

bþ

6
u�xxx
and the derivatives are evaluated at a. An upper bound follows:
jT jj 6
bþð1� hÞð3h2 þ 3hþ 1ÞbmaxMxxx

3bmin

h 6
7b2

maxMxxx

3bmin

h: ð21Þ
The same bound can be derived for T jþ1.

4.1.2. Stability analysis

We prove a discrete maximum principle in the following lemma.

Lemma 4.1. If bðxÞ is piecewise constant, then the coefficients are bounded above and below by
bmin

h2
6 jci;kj 6

2bmax

h2
; 1 6 i 6 n� 1; k ¼ 1; 2; 3
and a discrete maximum principle is satisfied:
ci;1 > 0; ci;3 > 0; ci;2 < 0; ci;1 þ ci;3 6 jci;2j; 1 6 i 6 n� 1:
Proof. The conclusions are obvious for regular points. At irregular points xj; xjþ1 with xj 6 a < xjþ1, (7) and
(6) imply
cj;1 ¼
bþ

h2
; cj;2 ¼ �

bþð1þ b�=b̂Þ
h2

; cj;3 ¼
bþb�=b̂

h2
;

cjþ1;1 ¼
b�bþ=b̂

h2
; cjþ1;2 ¼ �

b�ð1þ bþ=b̂Þ
h2

; cjþ1;3 ¼
b�

h2
:
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To prove the bounds, we distinguish two different cases. If b� 6 bþ,
bþb�

b̂
¼ bþb�

hb� þ ð1� hÞbþ
6

bþb�

hb� þ ð1� hÞb� ¼ bþ;

bþb�

b̂
¼ bþb�

hb� þ ð1� hÞbþ
P

bþb�

hbþ þ ð1� hÞbþ
¼ b�:
If on the other hand b� > bþ,
bþb�

b̂
¼ bþb�

hb� þ ð1� hÞbþ
>

bþb�

hb� þ ð1� hÞb� ¼ bþ;

bþb�

b̂
¼ bþb�

hb� þ ð1� hÞbþ
<

bþb�

hbþ þ ð1� hÞbþ
¼ b�:
Thus bmin 6 bþb�=b̂ 6 bmax. The conclusion follows from (7) via simplification. h
4.1.3. Convergence proof

We start with the following lemma, which generalizes Theorems 6.1 and 6.2 of [17].

Lemma 4.2. Given a difference scheme Lh defined on a discrete set of interior points JX, we assume the following

conditions hold:

1. JX can be partitioned into a number of disjoint sets
JX ¼ J 1 [ J 2 [ � � � J s; J i \ J k ¼£ if i 6¼ k:
2. The truncation error of the difference scheme at a grid point p satisfies
jT pj 6 T i; 8p 2 J i; i ¼ 1; 2; . . . ; s:
3. There exits a non-negative mesh function U defined on JX [ J oX satisfying
LhUp P Ki > 0; 8p 2 J i; i ¼ 1; 2; . . . ; s:
Then the global error of the approximate solution from the difference scheme at mesh points is bounded by
jjeijj1 6 max
A2JoX

UA

� �
max
16i6s

T i

Ki

� 	
;

where ei ¼ ui � Ui and J oX are the boundary points.

To prove the major theorem for convergence, the key is to construct the following comparison function:
UðxÞ ¼
ðx�aÞ2

bþ
þ ð1�aÞða�xÞb̂

bþ
þ ða�xjÞðxj�xÞ

h if x 6 a;

ðx�aÞ2
b� þ

aðx�aÞb̂
b� þ ðxjþ1�aÞðx�xjþ1Þ

h if x > a:

8<: ð22Þ
The function UðxÞ is non-negative at mesh points and the last two terms in each expression above correspond
to the Green function.

We apply the difference scheme (7) to the comparison function at j and jþ 1:
LhUj ¼
bþ

b̂
ð2þ hðq1 � 1Þ þ h2ðq1 � 1ÞÞ þ bþð1� hÞ

h
þ bþh

h
;

LhUjþ1 ¼
b�

b̂
ð2q2 þ 3hð1� q2Þ þ h2ðq2 � 1ÞÞ þ b�h

h
þ b�ð1� hÞ

h

with q1 :¼ b�=bþ, q2 :¼ bþ=b�. We are now ready to provide the error estimate in the following theorem.
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Theorem 4.3. Assume bðxÞ is piecewise constant, then the error of the approximate solution obtained from the

PIM is bounded by
kui � U ik 1 6 Cðbþ; b�;Mxxx;MxxxxÞh2:
Proof. In the notation of Lemma 4.2,
J 1 ¼ f1; 2; . . . ; j� 1g; J 2 ¼ fjþ 2; . . . ; n� 1g; J 3 ¼ fj; jþ 1g; J oX ¼ f0; ng:

In regions J 1 and J 2 the standard difference equation is used: LhUi ¼ 4. Thus
T i 6
bmaxMxxxx

12
h2 and

T i

Ki
6

bmaxMxxxx

24
h2; i ¼ 1; 2
for K1 ¼ K2 ¼ 2.
It’s straightforward to obtain the following inequalities:
bþ

b̂
ð2þ hðq1 � 1Þ þ h2ðq1 � 1ÞÞP bþ

b̂
ð2� h� h2ÞP 0;

b�

b̂
ð2q2 þ 3hð1� q2Þ þ h2ðq2 � 1ÞÞP b�

b̂
minf2; 2q2gP 0:
Hence in region J 3
LhUj P
bþð1� hÞ

h
þ bþh

h
¼ bþ

h
; LhUjþ1 P

b�h
h
þ b�ð1� hÞ

h
¼ b�

h
:

If we take K3 ¼ bmin=h and combine the local truncation error estimate (21), then
T i

Ki
6

7b2
maxMxxx

3b2
min

h2; i ¼ j; jþ 1:
Finally we estimate maxA2JoX
UA ¼ maxfUð0Þ;Uð1Þg. From the definition of UðxÞ, we have
Uð0Þ ¼ a2

bþ
þ að1� aÞb̂

bþ
þ ða� xjÞxj

h
;¼ a2

bþ
þ að1� aÞb̂

bþ
þ hxj:
Similarly, we have
Uð1Þ ¼ ð1� aÞ2

b�
þ að1� aÞb̂

b�
þ ð1� hÞð1� xjþ1Þ:
Since these are both of order Oð1Þ, the conclusion follows from Lemmas 4.1 and 4.2. h
4.2. Multiple intersections

We employ a more general approach for multiple-intersection cases by using an implicit construction of
comparison functions. Consider the typical case shown in Fig. 3 and define
h1 :¼ a1 � xj

h
; h2 :¼ a2 � xj

h
; b̂ :¼ ð1þ h1 � h2Þb� þ ð�h1 þ h2Þbþ:
Based on the formulas in A.1, we can show that Lemma 4.1 also applies to the double-intersection case. From
(11) and (12), the local truncation error at irregular points is bounded by
jT ij 6 Cðbþ; b�;MxxxÞh; i ¼ j; jþ 1: ð23Þ

A detailed calculation is tedious and avoided here. We are now ready to provide the error estimate in the fol-
lowing theorem.
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Theorem 4.4. Assume bðxÞ is piecewise constant, then the error of the approximate solution obtained from the 1D
PIM is bounded by
kuðxiÞ � uhðxiÞk1 6 Cða1; a2; b
þ; b�;Mxxx;MxxxxÞh2: ð24Þ
Proof. The solution to the following interface problem:
ðb/xÞx ¼ 1; /joX ¼ 1;

½/�ða1Þ ¼ 0; ½/�ða2Þ ¼ 0;

½b/x�ða1Þ ¼ �1; ½b/x�ða2Þ ¼ 1

ð25Þ
exits, and is unique, piecewise smooth, and bounded [6]. Let
UðxÞ :¼ /ðxÞ þ jmin
x2X

/ðxÞjP 0:
Then UðxÞ also satisfies the differential equations and jump conditions in (25). In the notation of Lemma 4.2,
let
J 1 ¼ f1; 2; . . . ; j� 1g; J 2 ¼ fjþ 2; . . . ; n� 1g; J 3 ¼ fj; jþ 1g; J oX ¼ f0; ng:

In regions J 1 and J 2 the standard difference equation is used: LhUi ¼ 1. Thus
T i 6
bmaxMxxxx

12
h2; and

T i

Ki
6

bmaxMxxxx

12
h2; i ¼ 1; 2
for K1 ¼ K2 ¼ 1.
At the irregular point j, the relation T j ¼ LhUj � Cj � fj ensures that
LhUj ¼ T j þ Cj þ fj;
where T j ¼ OðhÞ and
Cj ¼ �
bþ

h2
ðk1;3w1 þ k1;4w2 þ k1;5v1 þ k1;6v2 þ k1;7f ð1Þ þ k1;8f ð2Þ þ k1;9f ð3ÞÞ ¼ bþ

h2
ðk1;5 � k1;6Þ þOð1Þ:
Hence ignoring higher-order terms for simplicity,
LhUj ¼
bþ

h2
ðk1;5 � k1;6Þ þOð1Þ þOðhÞ � 2ð1� h2Þb� þ ðh2 � h1Þbþ

b̂h
¼:

C
h
;

where C is some generic positive constant depending on bþ;b�; h1; h2 but not h. Similarly, using the sign prop-
erty in (13) we can show that LhUjþ1 P C=h. Combining (23), we have T i=Ki 6 C=h2, i ¼ j; jþ 1. Finally since
both Uð0Þ and Uð1Þ are of order Oð1Þ, the conclusion follows from Lemma 4.2. h

Note 13. Compared with the previous theorem, the relative location of the interface h1, h2 enters the generic
constant in (24). This can be explained into two ways:

� In general, the solution uðxÞ depends on the location of interface points and so do its derivatives. In this
sense, h enters implicitly into the generic constant in the previous theorem.
� Typically, the convergence rate for interface problems is experimentally not constant and depends on the

relative positions. Thus we expect to see h’s in the generic constant.
4.3. Variable coefficients

We briefly discuss the case of variable coefficients. Following the same approach as in Section 2.1, we have
approximations of the form
bU jþ1 � k1;1Uj þ k1;2U jþ1 þ k1;3wþ k1;4vþ k1;5f ð1Þ þ k1;6f ð2Þ;bU j � k2;1U j þ k2;2Ujþ1 þ k2;3wþ k2;4vþ k2;5f ð1Þ þ k2;6f ð2Þ
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with
k1;1 ¼ 1� k1;2;

k1;2 ¼
b�b�ð2bþ þ ð�1þ 2hÞbþx hÞ

b̂
;

k1;4 ¼
1� h

2
ð2b� � ð1� hÞb�x hÞð2bþ � ð1� 2hÞbþx hÞh;

k2;1 ¼
bþbþð2b� þ b�x ð�s1þ 2hÞhÞ

b̂
;

k2;2 ¼ 1� k2;1;

k2;4 ¼
hh
2
ð2b� � ð1� 2hÞb�x hÞð2bþ þ hbþx hÞ;
where
b̂ :¼ 2bþb�ðhb� þ ð1� hÞbþÞ � ð1� hÞ2bþbþb�x hþ h2b�b�bþx h:
Only a partial list for ki;j is provided for simplicity, which is to be used in the convergence proof. Here b� and
its derivatives are evaluated at a. Thus at the irregular points
LhUj ¼
1

h2
ðbþjþ1=2k1;2Ujþ1 þ bþj�1=2Uj�1 � ðð1� k1;1Þbþjþ1=2 þ bþj�1=2ÞU jÞ;

LhUjþ1 ¼
1

h2
ðb�jþ3=2Ujþ2 þ b�jþ1=2k2;1U j � ðð1� k2;2Þb�jþ1=2 þ b�jþ3=2ÞU jþ1Þ
with
Cj ¼ �
bþjþ1=2

h2
ðk1;3wþ k1;4vÞ þ k1;5f ð1Þ þ k1;6f ð2Þ;

Cjþ1 ¼ �
b�jþ1=2

h2
ðk2;3wþ k2;4vþ k2;5f ð1Þ þ k2;6f ð2ÞÞ:
We summarize the result in the following theorem:

Theorem 4.5. If there exists a constant 0 < C < 1 with
h 6 2C
min

x
bðxÞ

max
x
jbxðxÞj

;

then the 1D PIM satisfies the discrete maximum principle and second-order convergence is achieved.

Proof. With the upper bound for h, the ki;j satisfies the same sign property as for the constant-coefficient case
in Section 2.1. Thus the same approach as before yields the conclusion. h
4.4. Asymptotic error estimates

We extend the approach of [11,17] to provide estimates which show more precisely how the Oðh2Þ error
behaves in the limit as the mesh size h tends to zero.

For simplicity of notation, we consider the case when there is only one interface point a and bþ ¼ b� ¼ 1
(see Fig. 2). The extension to general cases is straightforward. Using the same notation as before, we know
from previous calculations that the error satisfies
Lhei ¼ T i; ð26Þ

where the truncation error
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T i ¼

h2

12
uxxxx þOðh4Þ i 6¼ j; jþ 1;

� ½uxxx�
3!
ð1� hÞ3hþOðh2Þ i ¼ j;

� ½uxxx�
3!

h3hþOðh2Þ i ¼ jþ 1:

8>><>>:

We now define wð1Þ to be the solution of the problem
wð1Þxx ¼
1

12
uxxxx;

wð1Þð0Þ ¼ wð1Þð1Þ ¼ 0;

½wð1Þ�ðaÞ ¼ w1; ½wð1Þx �ðaÞ ¼ v1
and wð2Þ to be the solution of the problem
wð2Þxx ¼ 0;

wð2Þð0Þ ¼ wð2Þð1Þ ¼ 0;

½wð2Þ�ðaÞ ¼ w2; ½wð2Þx �ðaÞ ¼ v2;
where w1; v1;w2; v2 are constants to be determined later. Then w :¼ wð1Þ þ hwð2Þ satisfies
wxx ¼
1

12
uxxxx: ð27Þ
From (6)
Lhw
ð1Þ
j ¼ Cj þ fj þ T j ¼ �

1

h2
ðk1;3w1 þ k1;4v1 þ k1;5f ð1Þ þ k1;6f ð2ÞÞ þOð1Þ ¼ � 1

h2
w1 �

1� h
h

v1 þOð1Þ:
Similarly, we have
Lhw
ð2Þ
j ¼ �

1

h2
w2 �

1� h
h

v2 þOð1Þ:
Therefore,
Lhwj ¼ Lhw
ð1Þ
j þ hLhw

ð2Þ
j ¼ �

1

h2
w1 �

ð1� hÞv1 þ w2

h
þOð1Þ: ð28Þ
Repeating the steps at jþ 1 gives
Lhwjþ1 ¼ Lhw
ð1Þ
jþ1 þ hLhw

ð2Þ
jþ1 ¼

1

h2
w1 �

hv1 � w2

h
þOð1Þ: ð29Þ
If we define w1; v1;w2 by
w1 ¼ 0;

ð1� hÞv1 þ w2 ¼
½uxxx�

3!
ð1� hÞ3;

hv1 � w2 ¼
½uxxx�

3!
h3;

ð30Þ
then
w1 ¼ 0; v1 ¼
½uxxx�

3!
ðð1� hÞ3 þ h3Þ: ð31Þ
Combining (26)–(30) gives
Lh
ei

h2
� wi

� �



 



 6 Oðh2Þ i 6¼ j; jþ 1;

Lh
ei

h2
� wi

� �



 



 6 Oð1Þ i ¼ j; jþ 1:

ð32Þ
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Using Lemma 4.2 with the comparison function U in (22),
ei

h2
� wi





 



 6 Ch; ð33Þ
so
ei ¼ wð1Þi h2 þOðh3Þ: ð34Þ

We summarize the results in the following theorem:

Theorem 4.6. Assume that bþ ¼ b� ¼ 1, the solution uðxÞ is piecewise smooth and there is only one interface

point a. Then the numerical solution U i from the 1D PIM satisfies
ui � U i ¼ wð1Þh2 þOðh3Þ;

where wð1Þ is the solution of
wxx ¼
1

12
uxxxx;

wð0Þ ¼ wð1Þ ¼ 0;

½w�ðaÞ ¼ 0;

½wx�ðaÞ ¼
½uxxx�

3!
ðð1� hÞ3 þ h3Þ:
Note 14. With minor modification, the approach can be applied to piecewise constant coefficient cases. Com-
pared with the discrete maximum principle, the asymptotic estimate gives a sharp error estimate and a basis
for deferred correction.
5. The new multigrid solver

Our multigrid approach contains the usual components: an interpolation operator Ih
2h, a restriction opera-

tor I2h
h and a relaxation scheme. Let the error equation on the fine grid be Ahvh ¼ rh. The corresponding coarse

grid equation is A2hv2h ¼ r2h, where the restriction and coarse-grid operators are defined as [25,5]:
I2h
h :¼ ðIh

2hÞ
T
; A2h :¼ I2h

h AhIh
2h ð35Þ
and r2h :¼ I2h
h rh. Red–black Gauss–Seidel iteration [5] is used as our relaxation scheme, due to its efficiency and

easy implementation. The algorithm recursively consider A2hv2h ¼ r2h as the fine grid problem and telescopes
down to the coarsest grid.

We employ a novel interpolation operator Ih
2h, which attains second-order accuracy even for complex inter-

faces on coarse grids. Higher order accuracy is attained similarly with a larger stencil.

5.1. Operator-dependent interpolation for regular points

For two-dimensional problems, we need to define the interpolation operator Ih
2h such that vh ¼ Ih

2hv2h. Con-
sider a generic nine-point stencil shown in Fig. 11. At coarse-grid points, the value of v2h is simply copied to be
the value of vh. For fine-grid points that are on a vertical cell edge, we start with the discretization stencil (see
Fig. 11) and assume the error residual is small:
c0v0 þ c1v1 þ � � � þ c8v8 � 0: ð36Þ

Away from the interface, v varies smoothly. Hence we approximate as
v1; v3 � v0; v5; v6 � v2; v7; v8 � v4: ð37Þ

From (36), the interpolation scheme gives v0 ¼ c2v2 þ c4v4 with
c2 ¼ �ðc2 þ c5 þ c6Þ=ðc0 þ c1 þ c3Þ; c4 ¼ �ðc4 þ c7 þ c8Þ=ðc0 þ c1 þ c3Þ:



Fig. 11. The numbering scheme for the nine-point stencil (left) and the discretization stencil (right).
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The same strategy can be applied to fine-grid points that are on a horizontal cell edge. The interpolation
scheme is v0 ¼ c1v1 þ c3v3, where
c1 ¼ �ðc1 þ c5 þ c8Þ=ðc0 þ c2 þ c4Þ; c3 ¼ �ðc3 þ c6 þ c7Þ=ðc0 þ c2 þ c4Þ:

The only fine-grid points to be interpolated are those in the center of the cell. Since all values of the neighbor-
ing grid points have been determined, we can solve (36) to obtain the fine-grid values.

5.2. Interpolation for irregular points

At irregular points near interfaces, the approximation (37) is no longer valid since the error after pre-relax-
ation steps can have a large jump in the normal derivative [3]. However, since the jump conditions have been
explicitly incorporated into the PIM approach, it is natural to assume the following homogeneous jump con-
ditions along the interface:
½v� ¼ 0; ½bvn� ¼ 0; ½us� ¼ 0: ð38Þ

The basic idea of the new interpolation is to construct a piecewise-polynomial approximation and then eval-
uate it at a fine-grid point as in the PIM. A piecewise linear polynomial is sufficient for second-order accuracy.

5.2.1. Single intersection in 1D

Consider the typical case shown in Fig. 12. To approximate vðxÞ near the interface point a, we propose a
piecewise linear polynomial
pðxÞ ¼
p1ðxÞ :¼ a1xþ a2 x < a;

p2ðxÞ :¼ a3xþ a4 x > a

�

satisfying
pðx2h
i�1Þ ¼ v2h

i�1; pðx2h
i Þ ¼ v2h

i ; ½p�a ¼ 0; ½bpx�a ¼ 0:
The last two jump conditions come from (38). With four equations and four unknowns, we can solve for the
coefficients a1; . . . ; a4 and thus the interpolated value vh

2i�1 ¼ pðxh
2i�1Þ at the fine-grid point xh

2i�1.

5.2.2. Multiple intersections in 1D

On a coarse grid, more than one interface point may separate neighboring grid points. A typical example is
shown in Fig. 13. To approximate vðxÞ near the interface points a1 and a2, we propose a piecewise linear
polynomial
pðxÞ ¼
p1ðxÞ x < a1;

p2ðxÞ a1 < x < a2;

p3ðxÞ x > a2

8><>:

satisfying
Fig. 12. A single interface point a lies between coarse-grid points x2h
i�1 and x2h

i .



Fig. 13. Two interface points a1 and a2 lie between coarse-grid points x2h
i�1 and x2h

i .

Fig. 14
Indice
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pðx2h
j�1Þ ¼ v2h

j�1; pðx2h
j Þ ¼ v2h

j ; ½p�ai
¼ 0; ½bpx�ai

¼ 0; i ¼ 1; 2:
Solving for the coefficients gives the interpolated value vh
2i�1 ¼ pðxh

2i�1Þ at the fine-grid point xh
2i�1.

Note 15. The new interpolation in 1D is similar to [27]. For higher dimensions, however, [27] applies the 1D
interpolation dimension-by-dimension by implicitly assuming that
½bus�C � 0;
which may not be true if we have large jumps in b along the interface. Thus second-order accuracy can not be
attained by the method of [27].
5.2.3. Single intersection in 2D

The 1D approach extends naturally to 2D. Consider the case shown in Fig. 14a. To approximate vðx; yÞ
near the interface point a, we propose a piecewise linear polynomial
pðx; yÞ ¼ p1ðx; yÞ :¼ a1xþ a2y þ a3 ðx; yÞ 2 Xþ;

p2ðx; yÞ :¼ a4xþ a5y þ a6 ðx; yÞ 2 X�

�

satisfying
pðx2h
ik
; y2h

jk
Þ ¼ v2h

ik ;jk
; ðik; jkÞ 2 N2i;2j�1;

½p�a ¼ 0; ½bpn�a ¼ 0;
ð39Þ
where N2i;2j�1 is the index set of four coarse-grid points marked with filled circles in Fig. 14a. With six equa-
tions and six unknowns, we can solve for the coefficients and thus the interpolated value vh

2i;2j�1 ¼ pðxh
2i; y

h
2j�1Þ

at the fine-grid point ðxh
2i; y

h
2j�1Þ.

5.2.4. Multiple intersections in 2D

The same approach applies to the case when more than one interface point separate neighboring coarse-
grid points. Consider the typical case shown in Fig. 14b. To approximate vðx; yÞ near the interface points
a1; a2, we propose a piecewise linear polynomial
pðx; yÞ ¼
p1ðx; yÞ :¼ a1xþ a2y þ a3 ðx; yÞ 2 Xþ; y 6 ya1

;

p2ðx; yÞ :¼ a4xþ a5y þ a6 ðx; yÞ 2 X�;

p3ðx; yÞ :¼ a7xþ a8y þ a9 ðx; yÞ 2 Xþ; y P ya2

8><>:
. Interpolation at ðxh
2i; y

h
2j�1Þ. Filled circles are the coarse-grid points used for interpolation at the fine grid point(empty circle).

s are for the fine mesh. Here x2h
i ¼ xh

2i, and so forth.
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satisfying
pðx2h
ik
; y2h

jk
Þ ¼ v2h

ik ;jk
; ðik; jkÞ 2 N2i;2j�1;

½p�ai
¼ 0; ½bpn�ai

¼ 0; ½us� ¼ 0; i ¼ 1; 2;
where N2i;2j�1 is the index set of four coarse-grid points marked with filled circles in Fig. 14b and ðxai ; yai
Þ is the

coordinate of ai, i ¼ 1; 2. With 10 equations and 9 unknowns, we can solve for the coefficients via least squares
and thus the interpolated value is vh

2i;2j�1 ¼ pðxh
2i; y

h
2j�1Þ at the fine-grid point ðxh

2i; y
h
2j�1Þ.

Note 16. There are cases with too few neighboring points for interpolation due to high curvature of interfaces.
As shown in Section 3.3, these cases can be resolved by adding more polynomials appropriately.
5.3. Multigrid cycles

The most commonly used iteration cycles in multigrid are V-cycle, F-cycle and W-cycle. The efficiency and
robustness of them have been evaluated in our numerical experiments. We are particularly interested in F-
cycle since it is cheaper than W-cycle and much more robust than V-cycle in our experiments. The algorithm
is presented for convenience in a recursive format.
Algorithm 1: Multigrid F-cycle scheme

1: procedure MGF ðf h; vh; l1; l2; l3Þ
2: if coarsest level then

3: direct solver and return
4: else

5: Relax l1 times on Ahuh ¼ f h with initial guess vh

6: f 2h ¼ I2h
h ðf h � AhvhÞ

7: v2h ¼ 0
8: v2h ¼MGFðf 2h; v2h; l1; l2; l3Þ
9: Correct vh ¼ vh þ Ih

2hv2h

10: Relax l2 times on Ahuh ¼ f h with initial guess vh

11: if l3 > 0
12: f 2h ¼ I2h

h ðf h � AhvhÞ
13: v2h ¼ 0
14: v2h ¼MGFðf 2h; v2h; l1; l2; 0Þ
15: Correct vh ¼ vh þ Ih

2hv2h

16: Relax l3 times on Ahuh ¼ f h with initial guess vh

17: end if
18: end if

19. end procedure
5.4. Spectral analysis

In this section we investigate the eigenvalue spectra of iteration matrices. We are interested in exploring the
following questions:

(1) How is the F-cycle compared with the V-cycle in terms of convergence rates?
(2) How is the spectrum of iteration matrices related to convergence rates?
(3) How does the spectra of iteration matrix change as the jump in coefficients increases?

We denote the discretized linear system as
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Au ¼ b:
To study the convergence rates of various multigrid cycles, we split the matrix in the form
A ¼ K þ ðA� KÞ

with K being the iteration matrix. As a result, we can express one iteration of multigrid cycle as
Kuðiþ1Þ þ ðA� KÞuðiÞ ¼ b
or, equivalently
uðiþ1Þ ¼ ðI � K�1AÞuðiÞ þ K�1b:
Therefore, we have
rðiþ1Þ ¼ ðI � AK�1ÞrðiÞ; eðiþ1Þ ¼ ðI � K�1AÞeðiÞ; ð40Þ

where rðiÞ ¼ b� AuðiÞ, eðiÞ ¼ u� uðiÞ. Eq. (40) displays the close relation between asymptotic convergence rates
and the spectral radius of I � AK�1. Note that I � K�1A has the same spectral radius as I � AK�1. We consider
the following model problem. The interface is x2 þ y2 ¼ 0:500125632 and the exact solution is
uðx; yÞ ¼
r2 if ðx; yÞ 2 X�;

1� 1
8b� 1

b

� �
=4þ ðr4

2
þ r2Þ=bþ logð2rÞ=ð10bÞ otherwise;

(

where r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and the diffusion coefficient is
bðx; yÞ ¼ x2 þ y2 þ 1 if ðx; yÞ 2 X�;

b otherwise:

�

First consider a moderate value such as b ¼ 10. Fig. 15a and b presents the spectra for the V-cycle and F-cycle,
respectively, where q is the spectral radius of the corresponding matrices. These graphs show two important
features: (i) most eigenvalues are clustered around zero for both cases, and (ii) the spectra radius q from F-
cycle (0.007) is much smaller than that from V-cycle (0.073).

Fig. 15c illustrates the progress of iterations for V-cycle and F-cycle. The graphs show logðkrðnÞk2=krð0Þk2Þ
versus iterations where krðnÞk2 is the 2-norm of the residual vector after n iterations. It is clear that the asymp-
totic convergence rate qe of F-cycle (0.006) is much smaller than that of V-cycle (0.073), where we have
qe :¼ krðmÞk2=krð0Þk2 with m being the total number of iterations. The F-cycle is thus preferred for our test
problems even though it costs a little more than the V-cycle. Comparing Fig. 15a–c, we see that the spectral
radius determines the convergence rate as expected.

In the second experiment, we let the value of b vary and study the eigenvalue spectra of the iteration matri-
ces from the F-cycle. Fig. 15d shows the relation between b and q. Fig. 16 shows the detailed plots for selected
values of b. We have the following observations:

� Most eigenvalues are clustered around zero for all cases, which is advantageous for the Krylov methods
[18].
� As b!1, the spectral radius increases but tends to converge to some value much smaller than 1.0. Part of

the reason is that the corresponding continuous problem is always well-posed.
� As b! 0, the spectral radius increases rapidly and eventually exceeds 1 for b ¼ 0:0001 (see Fig. 15d). As a

result, the F-cycle diverges as confirmed by numerical experiments.

As shown by the numerical examples in Section 7, the Krylov-accelerated multigrid approach effectively
removes large eigenvalues, reduces the spectral radius and thus converges rapidly for all cases.

6. Preconditioned GMRES(m)

We accelerate multigrid by Krylov subspace iteration. In particular, we use multigrid as preconditioner for
GMRES [22]. The motivation comes from the inefficiency of multigrid as a solver alone in the case of large-
jump coefficients.
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Algorithm 2: GMRES(m) algorithm with F-cycle as a right preconditioner

1: procedure GMRES ðA; x; b; l1; l2; l3Þ
2: r0 ¼ b� Axð0Þ, b ¼ kr0k2, and v1 ¼ r0=b
3: for j ¼ 1; . . . ;m do
4: u ¼MGFðvj; 0;l1; l2; l3Þ
5: w ¼ Au
6: for i ¼ 1; . . . ; j do

7: hi;j ¼ ðw; viÞ
8: w ¼ w� hi;jvi

9: end for

10: hjþ1;j ¼ kwk2, vjþ1 ¼ w=hjþ1;j

11: Define V m ¼ ½v1; . . . ; vm�, Hm ¼ fhi;jg16i6jþ1;16j6m
12: end for

13: ym ¼ argminykbe1 � Hmyk2, xm ¼ x0 þ MGFðV mym; 0; l1; l2; l3Þ
14: If satisfied stop, else set x0 ¼ xm and restart
15: end procedure
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Fig. 16. Eigenvalue spectrum plots for the F-cycle with N ¼ 33. Here q is the spectral radius.
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The restarted version GMRES(m) is a robust solver for the linear system
Ax ¼ b;
where A is a sparse, unsymmetric matrix. If used as a solver alone, GMRES(m) may not be efficient. A large
number of iterations are expected, especially for the case when A is ill-conditioned. In many practical appli-
cations, people use the preconditioned GMRES(m) to accelerate the convergence. The right preconditioned
GMRES(m) algorithm is based on solving
AM�1u ¼ b; u ¼ Mx:
As is shown in [21], GMRES(m) builds an orthogonal basis of the right-preconditioned Krylov subspace
spanfr0;AM�1r0; . . . ; ðAM�1Þm�1r0g:

As a result, the approximate solution minimizes the 2-norm residual kb� Axk2 among all vectors from the
affine subspace
x0 þ spanfz0;M�1Az0; . . . ; ðM�1AÞm�1z0g

in which z0 is the preconditioned residual z0 ¼ M�1r0. Equivalently, the associated residual r ¼ b� Ax has the
minimal 2-norm among all vectors belonging to
r0 þ spanfAM�1r0; ðAM�1Þ2r0; . . . ; ðAM�1Þmr0g:

This observation is useful in constructing the GMRES minimal polynomial explicitly. The pseudocode for
GMRES(m) right preconditioned with multigrid is provided in Algorithm 2.
7. Numerical examples

We have tested our PIM discretization and IMG solver with a number of 2D experiments. We investigate
the accuracy of the computed solution, and the efficiency of the multigrid solver for problems with complex
interfaces or high-contrast coefficients.

Our test problem is
Lu :¼ r � ðbruÞ ¼ f in Xþ [ X�;

½u� ¼ w; ½bun� ¼ v on C;

u ¼ g on oX
with X :¼ Xþ [ C [ X� ¼ ½�1; 1� 	 ½�1; 1�. A Cartesian grid is used with
xi ¼ �1þ ði� 1Þh; yj ¼ �1þ ðj� 1Þh;
where h ¼ 2=ðN � 1Þ and N varying from 20 to 600.
The order of the scheme is estimated as
order :¼ logðkE2Nk1=kENk1Þ
logð2Þ





 



;

where kENk1 is the maximum error
kENk1 :¼ max
i;j
juðxi; yjÞ � Uijj
on an N 	 N grid.
Interfaces are represented with linear line segments where we use 3000 control points for smooth interfaces

with high curvature. The only exception is the pentagon example, where only 10 control points are needed.
For the new multigrid solver, we use two pre- and two post-Gauss–Seidel smoothing steps. The coarsest grid
is 9	 9 and the iteration is stopped when the relative residual norm satisfies
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kLhU � fhk2

kfhk2

< 10�10; ð41Þ
where our discretization contributes the linear system LhU ¼ fh.
We test four different solvers:

� GMRES-F: GMRES as solver right preconditioned with the F-cycle.
� BiCGSTAB-F: BiCGSTAB as solver right preconditioned with the F-cycle.
� The direct solver SuperLU [8].
� The AMG method using AMG1R6 [20,24].

To measure the performance of Krylov-accelerated multigrid solver, we define
nit :¼ number of iterations to satisfy 10-digit accuracy ð41Þ;
tit :¼ total CPU seconds for the new Krylov-accelerated multigrid solver:
All the tests are done on one processor of a Sun Java workstation W2100z with 3.2 GB memory and dual
AMD 1.8 GHz Opteron CPUs. The code is written in C++ and compiled with gcc 4.0. The implementation
of the methods is sequential and unoptimized.

7.1. The IMG solver

We compare the IMG solver with AMG and SuperLU and study the effect of high-contrast coefficients.

7.1.1. Example 1: solver comparison
Our initial motivation was to design a fast efficient solver. In this example, we would like to compare the

performance, in terms of CPU seconds, of our iterative solver GMRES-F, algebraic multigrid (AMG) and
direct solver SuperLU [8]. We test the AMG method using AMG1R6 written by Ruge, Stüben and Hempel
with version date 1997. The interface is (see Fig. 1)
X ðhÞ ¼ ðaþ b cosðmhÞ sinðnhÞÞ cos h;

Y ðhÞ ¼ ðaþ b cosðmhÞ sinðnhÞÞ sin h

�

with a ¼ b ¼ 0:40178 and m ¼ 2; n ¼ 6. The exact solution is
uðx; yÞ ¼ x� y2 if ðx; yÞ 2 Xþ;

ex cos py otherwise

�

and the diffusion coefficient is
bðx; yÞ ¼ b if ðx; yÞ 2 Xþ;

1þ x2 þ y2 otherwise:

�

Table 2 shows how the CPU time (in seconds) grows with respect to mesh size N. For the case b ¼ 1000, tim-
ings of GMRES-F and AMG are comparable. Our experiments show that their performance slightly surpass
SuperLU for N P 400 and we expect larger differences as N increases. SuperLU also requires a large amount
of memory and easily goes beyond what is available for N P 700 or so.

However, for the case b ¼ 0:001, the AMG solver slows down dramatically, while GMRES-F and SuperLU
remain similar to the previous case. In both cases, GMRES-F performs very well and least-squares analysis
shows a growth rate of 2.0 as expected.

7.1.2. Example 2: the effect of high-contrast coefficients

Most standard multigrid approaches perform poorly for elliptic problems with high-contrast coefficients.
We would like to study how different jumps in coefficients affect the convergence of the IMG solver, as well



Table 2
Example 1: CPU time (in seconds) comparison

N b ¼ 1000 b ¼ 0:001

GMRES-F SuperLU AMG GMRES-F SuperLU AMG

33 0.1 0.1 0.1 0.1 0.1 0.9
65 0.2 0.1 0.2 0.2 0.1 1.4
129 0.8 0.3 0.8 1.2 0.3 10.2
257 3.4 3.0 3.5 6.8 3.0 96.5
513 13.9 23.7 15.8 24.4 22.4 556.3
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as the accuracy of our PIM discretization. Both GMRES-F and BiCGSTAB-F are used to verify the robust-
ness of the Krylov-accelerated multigrid solver.

The interface is x2 þ y2 ¼ 0:500125632. The exact solution is
Table
GMRE

N

33
65
129
257
513
uðx; yÞ ¼ sinðxþ yÞ þ 1 if ðx; yÞ 2 Xþ;

cosðxþ yÞ þ 1 otherwise

�

and the diffusion coefficient
bðx; yÞ ¼ b if ðx; yÞ 2 Xþ;

1 otherwise:

�

Here b is a contrast parameter varying from 10�3 to 103 and introducing ill conditioning when small. Table 3
displays iteration counts and CPU seconds for GMRES(20) preconditioned with the IMG solver. Grid-inde-
pendent convergence is confirmed for all values of b. CPU time grows linearly with the number of unknowns.
As the jump in b along the interface becomes larger, the iteration number grows but remains small. Note that
as b approaches 0, in addition to large jump in b, the continuous problem becomes more ill-conditioned (see
Fig. 17b).

In Table 4 BiCGSTAB [26] is the solution method preconditioned with the IMG. A similar convergence
pattern is evident. For each iteration, BiCGSTAB requires two matrix–vector products and two precondition-
er solves, while GMRES needs one matrix–vector product and one preconditioner solve. This explains why
iteration counts in BiCGSTAB-F are always less than those in GMRES-F. The CPU seconds between them
are always comparable. Table 5 shows the convergence analysis.

7.2. Accuracy and convergence analysis

We investigate the accuracy of the computed solutions with complex interfaces and high-contrast
coefficients.

7.2.1. Example 3: complex interfaces

The exact solution is
uðx; yÞ ¼ xþ y þ 1 if ðx; yÞ 2 Xþ;

sinðxþ yÞ þ cosðxþ yÞ þ 1 otherwise

�

3
S(20)-F: each entry represents ðnitÞtit

b

0.001 0.01 0.1 1 10 100 1000

(5)0.1 (5)0.1 (4)0.1 (3)0.0 (4)0.1 (4)0.1 (4)0.1
(6)0.3 (5)0.2 (4)0.2 (3)0.2 (4)0.2 (5)0.2 (5)0.2
(6)1.2 (6)1.2 (4)0.9 (3)0.8 (4)1.0 (5)1.1 (5)1.1
(6)5.5 (6)5.6 (4)4.3 (3)3.6 (4)4.3 (5)5.0 (5)4.9

(7)23.8 (6)21.7 (5)18.8 (4)16.4 (4)16.3 (5)18.8 (5)18.7
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Fig. 17. Example 2: (a) the computed solution for N ¼ 65, b ¼ 1000; (b) the maximum error kENk1 versus the mesh size N in log–log
scale.

Table 4
BiCGSTAB-F: each entry represents ðnitÞtit

N b

0.001 0.01 0.1 1 10 100 1000

33 (3)0.1 (3)0.1 (2)0.1 (2)0.0 (2)0.1 (2)0.0 (2)0.0
65 (3)0.2 (5)0.3 (2)0.2 (2)0.2 (2)0.2 (3)0.2 (3)0.2
129 (4)1.3 (4)1.2 (2)0.8 (2)0.7 (2)0.8 (3)0.9 (3)1.0
257 (4)5.3 (4)5.0 (2)3.5 (2)2.9 (2)3.5 (3)4.0 (3)4.1
513 (4)20.6 (4)20.5 (5)25.3 (2)13.7 (2)13.9 (3)16.1 (3)16.1

Table 5
Example 2: high-contrast coefficients

N b ¼ 0:001 b ¼ 0:1 b ¼ 10 b ¼ 